PROSIDING
 SEMINAR STAFF PENGAJAR FAKULTAS TEKNIK HEDS - DIKTI - JICA

3-5 Agustus 1993

Fakultas Teknik
Universitas Sumatera Utara
JI. Almamater, Padang Bulan, Kampus USU Medan
Sumatera Utara

NOVEMBER 1993

PROJECT MANAGEMENT UNIT

Higher Education Development Support Project

KWh METER ELEKTRONIK BERBASIS MIKROPROSESOR MC6802

Ir. Sindak Hutauruk, Kepala Laboratorium Elektronika dan Telekomunikasi Fakultas Teknik, Kepala Pusat Komputer Universitas HKBP Nommensen Medan

Peneltian ini membahas mengenai kWh meter sebagai suatu alat ukur daya rata-rata listrik, dimana alat ukur tersebut menggunakan mikroprosesor MC6802 dan Peripheral Interface Adaptor MC6821 untuk menerima, memproses, menyimpan dan mengeluarkan data ke peraga LED seven segment dalam bentuk angka numerik serta menggunakan ROM 2732 sebagal tempat penyimpanan program. Data disimpan pada RAM internal mikroprosesor. Dengan alat tersebut, selain berfungsi sebagai counter untuk perhitungan daya terpakal juga dapat menampilkan jumlah daya terpakai dalam kurun waktu tertentu sesuai dengan keinginan sipemakai.

I. PENDARULUAN

Pemakaian peralatan elektronik dewasa ini dapat dikatakan telah memasuki hampir di segala bidang kehidupan manusia, baik di bidang peralatan kontrol, pengolahan informasi, kedokteran, penerbangan, industri maupun di bidang lingkungan rumah tangga. Banyak alat yang tadinya bersifat mekanik diganti oleh alat yang bersifat elektronik tanpa merubah fungsi alat tersebut, hal ini dilakukan untuk memperoleh beberapa kelebihan dan kemudahan. Salah satu perubahan tersebut terjadi pada alat-alat ukur seperti volt meter, alat ukur temperatur dan lain-lain. Pada Penelitian ini penulis mencoba membuat alat ukur energi beban atau kWh meter elektronik menggunakan sistem mikroprosessor,
dimana beban yang terpakai dapat langsung dilihat pada peraga seven segment.

I.1. Latar Belakang Masalah

Bertitik tolak dari kemampuan dan sifat sistem mikroprosessor yang programmable dan luwes untuk berbagai keperluan (relatif). terpikirkan suatu ide untuk membuat KWh meter elektronik menggunakan sistem mikroprosessor.

Pemakai tenaga listrik sebagai sumber energi untuk berbagai kebutuhan, baik itu untuk kebutuhan rumah tangga, perusahaan maupun pabrik, sudah sangat luas digunakan dan dirasakan manfaatnya, tetapi sering sekali terjadi klaim dari pihak konsumen karena ketidak-puasan terhadap besarnya tagihan rekening atas energi terpakai yang telah digunakannya, hal ini terjadi karena beberapa faktor, antara lain:

- kesalahan pembacaan angka pada KWh meter konvensio nal oleh petugas pencatat.
- Kesalahan pengukuran KWh meter itu sendiri
- Ketidak-tahuan konsumen untuk mengetahui berapa besarnya energi terpakai yang telah digunakan per kurun waktu tertentu.

Penulis mencoba membuat KWh meter elektronik menggunakan sistem mikroprosessor untuk memperoleh beberapa keuntungan, antara lain:

- angka-angka yang menunjukkan besarnya energi terpakai diperagakan dalam bentuk digit, sehingga dapat dibaca dengan mudah.
- pemakai dapat dengan mudah mengetahui berapa besar energi terpakai dalam kurun waktu yang dikehendakinya sehingga lebih menghemat pemakaian energi listriknya.
- walaupun alat tersebut berupa Kwh
elektronik yang sumber tegangan catu dayanya berasal dari jala-jala listrik, akan tetapi tidak mempengaruhi perhitungan lanjut jika listrik mati sebab alat tersebut menggunakan memori pada sistem mikroprosessor, yang catu dayanya secara otomatis diperoleh dari baterai (NiCad) jika listrik mati.

1.2. Ruang Iingkup Penelitian

Batasan - batasan :

- maksimum penghitungan sebesar 9999 Wh
- perhitungan nilai rupiah sebagai jumlah rekening atas energi terpakai tidak dilakukan
- jumlah energi yang dapat diukur tergantung dari batas maksimum kemampuan resistor arus detektor.

II. PERANGKAT RERAS KWH METER ELEKTRONIR

Secara garis besar, perangkat keras kWh meter elektronik yang dibuat terdiri dari :

1. Rangkaian-rangkaian yang menghasilkan daya rata rata beban dalam besaran analog.
. Rangkaian interface yang merubah besaran analog ke dalam besaran yang dapat diterima oleh sistem mikroprosessor
2. Rangkaian sistem mikroprosessor yang menerima, mengolah, menyimpan data masukan sehingga diperoleh besaran energi beban terpakai dalam kurun waktu tertentu. Hasil olahan ini ditampilkan pada display LED seven segment.
Rangkaian-rangkaian yang menghasilkan daya rata-rata beban dalam besaran analog yang terdiri dari : rangkaian detektor tegangan, arus, pengali, integrator

Rangkaian interface yang merubah besaran analog ke dalam besaran yang dapat diterima sistem mikroprosessor yang terdiri dari: VCO (Voltage Control Oscillator), pembagi frekuensi, penghitung pulsa. Rangkaian sistem mikroprosessor terdiri dari : enkoder, PIA (Peripheral Interface Adaptor), mikroprosesor dan rangkaian penunjangnya, dekoder.

II. 1 PRINSIP KERJA ALAT

Blok diagram perangkat keras dari sistem KNH meter elektronik ini seperti yang terlihat pada gambar 1. 2L adalah beban yang akan diukur daya rata-ratanya, dapat bersifat induktif, resistif maupun kapasitif.

Gambar 1 Blok diagram KWh meter elektronik
Tegangan efektif (rms) dari jala listrik yang diterima oleh beban adalah sebesar 220 Vac, maka daya sesaatnya dapat dinyatakan dalam :

$$
p(t)=V(t) i(t)
$$

dan dengan mengintegrasikan daya sesaat diperoleh daya rata-rata beban, yaitu :

$$
P=\frac{1}{T} \int_{0}^{T} P(t) d t
$$

Tegangan jala listrik dibagi oleh pembagi tegangan (voltage divider) dengan maksud agar tegangan jala dirubah menjadi tegangan yang dapat diterima oleh masukan op amp Al. Besarnya arus beban dideteksi dengan menggunakan resistor detektor (Rd) dengan resistansi kecil sekali yang dipasang seri dengan beban. Besarnya arus beban akan sama dengan besarnya arus yang melalui resistor detektor ini.

Perubahan tegangan pada resistor detektor adalah sebanding dengan perubahan arus beban, tegangan inilah yang diberikan kepada masukan
op amp A2. Keluaran dari A1 kemudian dikalikan dengan keluaran A2 pada rangkaian pengali (four quadrant multiplier) untuk mendapatkan arus yang sebanding dengan daya sesaat pada beban. Keluaran dari rangkaian pengali diintegrasikan oleh rangkaian integrator sehingga diperoleh tegangan yang merepresentasikan daya rata-rata beban yang sedang diukur.

Tegangan keluaran dari integrator merupakan masukan bagi VCO untuk merubah besaran arus (hasil konversi tegangan ke dalam arus) ke dalam besaran frekuensi. Perubahan arus yang masuk ke dalam vco mengakibatkan terjadinya perubahan frekuensi keluaran VCO.

Frekuensi keluaran vco diberikan ke pembagi frekuensi (binary ripple counter) untuk dibagi dengan suatu konstanta sehingga didapatkan besaran waktu dalam jam melalui kalibrasi alat. Frekuensi keluaran dari pembagi frekuensi ini diberikan ke penghitung pulsa yang merupakan masukan bagi sistem mikroprosessor. Sistem mikroprosessor akan mengolah data agar diperoleh besarnya energi terpakai pada kurun waktu tertentu serta menyimpan data akhir pengukuran.

Keluaran dari sistem mikroprosessor ini diperagakan pada empat buah peraga LED seven segment sebagai penunjuk besarnya energi yang terpakai.

II. 2 Detektor Tegangan

Detektor tegangan dimaksudkan untuk memperoleh besaran tegangan beban yang dibutuhkan oleh rangkaian pengali.

Tegangan beban 220 V dibagi oleh pembagi tegangan Ri dan $\mathrm{R} 2,(\mathrm{Gbr} .2)$ sehingga dapat diterima oleh rangkaian pengali melalui penguat A1.

Gbr.2. Rangkaian Pembagi Tegangan
Besarnya tegangan (VD) yang dihasilkan oleh rangkaian pembagi tegangan (voltage divider) adalah:

$$
\begin{aligned}
V D & =\frac{R 2}{R 1+R^{2}} \text { vin } \ldots \ldots \ldots \ldots .1 \\
& =\frac{3,3}{200+3,3} 220 \\
& =3,6 \mathrm{~V}
\end{aligned}
$$

D1oda D1, D2, D3 dan D4 digunakan sebagai proteksi tegangan masukan A1 dan A2 agar tidak melebihi tegangan catu dayanya (12 V). Penguatan A1 adalah sebesar 10 kali (Avi = 10) jika hubungan A dilepas.

$$
\begin{aligned}
\text { AV1 } & =\frac{R 7+R 6}{R 6}=\frac{R 7}{R 6}+1 \\
=\frac{19,8}{2,2}+1 & =9+1=10 \\
\text { Vout } & =\text { AV1 Vin } \\
\text { Vout } & =10 \mathrm{Vin}
\end{aligned}
$$

Jika tegangan pada beban rendah sekali maka hubungan A dilepas sehingga penguatan A1 sebesar 10 kali, dengan cara ini sensitifitas pengukuran dapat ditingkatkan.

II. 3 Detektor Arus Beban

Detektor arus beban mengkonversikan arus beban ke tegangan, sehingga diperoleh besaran tegangan yang dibutuhkan rangkaian pengali. Pendeteksian arus beban dilakukan dengan menggunakan resistor detektor $\mathrm{Rd}(0,47 \mathrm{Ohm}, 5$ watt) dengan toleransi sebesar 10%. Arus beban sama dengan arus yang melalui resistor Rd dikurangi arus yang melalui R2. Rangkaian detektor arus beban diperlihatkan pada gambar 3.

Gambar 3. Rangkaian deteksi arus beban
Dari gambar 3., besarnya arus pada resistor detektor sama dengan besarnya arus beban ditambah arus yang mengalir pada resistor R_{2} (IR2). Besarnya IR2 adalah :

$$
\begin{aligned}
I R d & =I b+I R 2 \\
V D & =3,6 \mathrm{~V} \\
I R 2 & =\frac{V D}{R 2}=\frac{3,6}{3300}=1,09 \mathrm{~mA}
\end{aligned}
$$

Jika tanpa beban $2 L, V R d=I R 2 \times R d$

$$
\begin{aligned}
& =1,09 \times 10^{-3} \times 0,47 \\
& =5,1 \times 10^{-4} \\
& =0,51 \mathrm{mV}
\end{aligned}
$$

Tegangan VRd inilah yang merupakan tegangan referensi bagi masukan differensial rangkaian pengali. Rangkaian pengali akan mengalikan kedua besaran masukannya apabila tegangan masukan differensialnya melebihi tegangan Vrd (tanpa beban).

Tegangan VRd di atas 0.51 mV merupakan tegangan yang ditimbulkan oleh adanya arus beban pada Rd: Besarnya tegangan tersebut tergantung dari besarnya daya beban. Besarnya arus maksimum yang dapat diterima oleh Rd adalah :

$$
\begin{aligned}
& I R \text { dmax }^{2}=\frac{P d}{R d} \\
& =\frac{5}{0,4.7}=10,6 \\
& \text { IRdmax } \\
& =3,25 \mathrm{~A} \\
& \text { VRdmax }=I R d m a x \times R d \\
& =3,25 \times 0,47 \\
& =1,52 \mathrm{mV}
\end{aligned}
$$

maka arus beban maksimum yang masih dapat diterima oleh Rd adalah :

$$
\begin{aligned}
\text { Ibmax } & =I R d \max -I R 2 \\
& =3,25-1,09 \times 10^{-3} \\
& =3.249
\end{aligned}
$$

beban maksimum yang dapat diukur adalah :
Pbeban $=$ Ibmax $\times V \operatorname{Cos} \varphi\left(m i s a l \operatorname{Cos} \psi^{\circ}=1\right.$)

$$
\begin{aligned}
& =3,249 \times 220 \\
& =714,7 \text { Watt }
\end{aligned}
$$

Persentase kesalahan pengukuran akibat adanya resistor detektor adalah :

$$
\frac{I R d^{2} \times R d}{\text { Pbeban }} \times 100 \text { \% }
$$

Dengan adanya resistor detaktor, maka besarnya daya beban adalah $P=I b^{2} 2 L+I R d^{2}$ Rd, tetapi besarnya Ird ${ }^{2}$ Rd ini dapat dieliminasi pada waktu kalibrasi alat.

Untuk pengukurian beban yang lebih besar dari beban maksimum, maka Rd harus diperkecil agar arus yang terdeteksi lebih besar.

II. 4 Rangkaian Pengali (Multiplier)

Keluaran dari kedua buffer A1 dan A2 dikalikan oleh rangkaian pengali. Dalam hal ini digunakan rangkaian pengali empat kwadran, karena dengan rangkaian pengali tersebut dapat menerima masukan yang berupa tegangan AC yang sama ataupun berbeda fasa sesuai kondisi kerja. Maka dipakai IC. LM 13600 (OTA) dengan beberapa komponen tambahan seperti pada gambar 4.

Gambar 4. ekivalen dari sisrkit diagram OTA yang dikonfigurasi sebagai four quadrant multiplier

Arus keluaran I3 (arus keluaran rangkaian pengali yang dikonfigurasi sebagai four quadrant multiplier) adalah hasil perjumlahan dari arus keluaran OTA (II) dengan arus yang dihasilkan oleh komponen umpan baliknya (I2). Arus keluaran OTA adalah :

$$
\begin{aligned}
& I 1=\left[\frac{I A B C q}{2 K T}\right] V 2 \\
& I_{1}=\left[\frac{I A B C g}{2 K T}\right], g m=\left(\frac{I A B C q}{2 K T}\right) \\
& V 2=
\end{aligned}
$$

$I_{1}=g m$ V2
$K=$ Konstanta Boltman $=1,38 \times 10^{-23}$
$T=$ Temperatur (${ }^{\circ} \mathrm{K}$)
$q=$ muatan elektron $=1,6 \times 10^{-19} \mathrm{C}$
$\mathrm{gm}=$ transkonduktansi (A / mV)
$\frac{\mathrm{KT}}{\mathrm{q}}=26 \mathrm{mV}$, pada temperatur $25 \mathrm{c}^{0}$

$$
\begin{aligned}
\text { maka } I 1 & =\frac{I A B C}{2 \times 26} \mathrm{~V} 2 \\
& =k I A B C V 2, \quad k
\end{aligned}
$$

$I 3=I 1+I 2$
$=\mathrm{II}$ IABCV2 $+\frac{\mathrm{V} 2}{\mathrm{R} 15}$
$k I A B C=-(S+s 0)$ so $=$ slope saat V1 $=0$ $\mathrm{S}=\mathrm{Kx} \times \mathrm{V} 1, \mathrm{Kx}=k \mathrm{gm}$ $=k^{2} \operatorname{IABC}$
$I 3=-(S+s 0) \times V 2+\frac{V 2}{R 15}$

$$
=-\mathrm{Rx} \times \mathrm{V}_{1} \times \mathrm{V}_{2}-\mathrm{S} 0 \times \mathrm{V}_{2}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{15}}
$$

jika P2 diatur sehingga $\mathrm{so}=1 / \mathrm{R15}$ maka :

$$
I_{3}=-\mathrm{Rx} \times \mathrm{V}_{1} \times \mathrm{V}_{2} \frac{\mathrm{~V}_{2}}{R_{15}}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{15}}
$$

$$
I_{3}=-K x \times V_{1} \times V_{2}
$$

Pada awal pengoperasian, P2 diatur sehingga tegangan keluaran sama dengan nol pada saat V1 sama dengan nol. Kemudian V1 diberi tegangan dan P1 diatur agar perbedaan tegangan pada kedua masukan penguat rangkaian pengali sama dengan nol akibatnya tidak ada arus pada masukan rangkaian penguat, keluaran (I3) sama dengan nol.

Tegangan vi konstan, yang berubah-ubah adalah tegangan V2 sehingga besarnya keluaran rangkaian pengali tergantung dari V2. Keluaran arus i3 pada rangkaian pengali merepresentasikan daya sesaat beban. Bila salah satu tegangan V1 atau V2 nol, maka tidak ada arus keluaran (I3) sebab hasil perkalian Vi dan V2 adalah nol.

II. 5 Integrator

Sebelum masuk ke rangkaian VCO, maka arus keluaran rangraian pengali (i3) yang merepresentasikan daya sesaat beban dintegrasikan oleh rangkaian integrator untuk mendapatkan besaran arus rata-rata yang sebanding dengan daya rata-rata beban.

Gambar 5 Rangkaian Integrator

Dengan rangkaian integrator tersebut, kita peroleh tegangan keluaran integrator (pada titik A) yaitu :

$$
\begin{aligned}
V a v & =\frac{-1}{C 11 / / R 28} \int_{0}^{T} i 3(t) d t \\
I a v & =\frac{V a v}{R 17+R p^{3}} \\
-I c & =I b+I a v \\
-I c & =I b+\frac{V a v}{R 17+R^{3} 3}
\end{aligned}
$$

pada daerah aktif Ic $=\beta$ Ib $I b=\frac{I c}{\beta}$ $-I c=\frac{I c}{3}+\frac{V_{0 V}}{R 17+R p 3}$
-Ic $\left[\frac{E+1}{B}\right]=\frac{\operatorname{VaV}}{R 17+R p 3}$ $I_{c}=\frac{\beta}{(\beta+1)(R 17+R p 3)} \times V_{\text {iv }}$
Tegangan Vav merupakan tegangan rata-rata dan arus yang diperoleh merupakan arus rata-ratanya (Iav) yang sebanding dengan daya rata-rata beban yang diukur.

Rangkaian integrasi R28/C11 akan mengintegrasikan arus bolakfbalik keluaran rangkaian pengali (13) sehingga diperoleh arus rata-rata yang akan mendrive ampere meter M melalui dioda DS atau T1. Pada saat arus masukan integrator positif (DS off. Ti on) kapasitor Cil dimuati arus dan pada saat arus masukan integrator negatif (D5 on, Tl off) kapasitor cll membuang arus. Pada saat arus masukan integrator nol maka op amp A3 dalam keadaan loop terbuka karena D5 dan T1 sama-sama dalam keadaan off. dalam keadaan ini penguatan op amp besar sekali sehingga
perubahan arus masukan dari nol menuju negatif yang sedikit saja sudah dapat mengaktifkan dioda DS (tidak terjadi pemotongan sinyal masukan akibat adanya tegangan Vc dioda) dan demikian juga jika perubahan arus dari nol menuju positif yang sedikit saja sudah dapat mengaktifkan transistor Tl. Dengan cara demikian maka diperoleh arus rata-rata (Iav).

Besarnya arus rata-rata yang diperoleh dapat diatur dengan mengatur tahanan Rpz, hal ini diperlukan pada saat kalibrasi. Arus ini sebanding dengan daya beban yang diukur atau dengan kata lain perubahan arus ini sebanding dengan perubahan daya beban yang diukur. Arus rata-rata yang diperoleh diberikan ke vCO sehingga diperoleh sinyal (persegi) keluaran vCO yang sebanding dengan daya beban

II. 6 VCo (Voltage Control Oscillator)

Rangkaian vco yang digunakan disini pada dasarnya merupakan Current Control Oscillator, tetapi prinsip kerjanya sama dengan vco (gambar 6).

Rangkaian vco ini akan mengubah arus masukan menjadi bentuk pulsa persegi. Dalam hal ind besarnya frekuensi keluaran VCo tergantung dari besarnya penguatan arus bias (Amplifier bias current) VCO, sedangkan besarnya penquatan arus bias tersebut tergantung dari besarnya daya beban yang diukur, dengan kata lain semakin besar daya yang terukur maka semakin tinggi frekuensi keluaran VCO. Kenaikan frekuensi keluaran VCO terhadap besarnya daya atau arus beban yang diukur naik secara linier.

Gambar 6. Rangkaian VCO

Gambar 7. Tegańgan keluaran vco

$$
\begin{aligned}
& +V T=\frac{R 1+R 21}{R 1+R 21+R 20} \times(+V \text { sat })=2,5 \mathrm{~V} \\
& -V T=\frac{R 1+R 21}{R 1+R 21+R 20} \times\left(-V_{\text {sat }}\right)=-1,5 \mathrm{~V}
\end{aligned}
$$

Tegangan pada titik B merupakan tegangar referensi yang berayun pada +Vi dan - VT.

$$
\begin{aligned}
V_{0} & =\frac{R 20}{R 1+R 21}+1 \times V i n \quad, V i n=V T \\
& =\frac{10}{10+1}+1 \times 1,5=11,5 \mathrm{~V} \\
\mathrm{f} 0 & =\frac{(R 1+R 21) \mathrm{gm}}{(R 1+R 21+R 20) 2 \pi C}, g m=19,2 I A B C
\end{aligned}
$$

Dari persamaan di atas, frekuensi keluaran vCO tergantung dari IABC dan R1 Resistor $R 1$ dapat diatur untuk mengatu: frekuensi keluaran VCO, pengaturan ini diperlukan pada saat mengkalibrasi tersebut.

Transistor T1 memberikan arus drive kepada OTA (A6) yang besarnya tergantung dar daya yang terukur. Semakin besar daya bebar
yang diukur maka semakin besar pula arus drive T1. Arus drive ini mengisi kapasitor C melalui keluaran As yang lama pengisiannya tergantung dari besarnya arus drive T1. Tegangan yang timbul pada Cl diberikan ke pembanding Ab, sebelumnya arusnya dikuatkan terlebih dahulu oleh stage buffer. Jika tegangan ini melebihi batas atas threshold (tegangan referensi) dari pembanding A_{4} maka keluaran pembanding menjadi negatif. Karena keluaran dari rangkaian pembanding juga merupakan masukan differensial bagi A6 maka akibatnya masukan differensial Ao juga menjadi negatif. hal ini menyebabkan Cl discharge dengan kecepatan pengosongar tergantung dari arus drive yang diberikan. Dengan caxa ini keluaran vCO berbentuk gelombang persegi yang frekuensinya tergantung dari axus drive pula. Dapat ditarik kesimpulan bahwa arus keluaran rangkaian integrator yang merepresentasikan daya nyata beban dirubah ke dalam bentuk sinyal persegi yang frekuensinya tergantung dari besarnya daya beban. Untuk merubah besaran watt menjadi energi maka besaran watt dikalikan dengan waktu. Perubahan ini dilakukan dengan menggunakan rangkaian pembagi frekuensi serta pengaturan frekuensi keluaran vCo saat kalibrasi.

Gambar 8. Rangkaian pembagi frekuensi dan penghitung pulsa

II. 7 Pembagi frekuensi

Pembagi frekuensi ini (gambar 9.) menggunakan ripple binary counter yang akan membagi masukannya dengan 4096 ($=2$) sehingga keluarannya (pada Q12) merupakan hasil bagi frekuensi masukannya.

Gambar 9. Pembagi frekuensi

$$
\begin{aligned}
\mathrm{V} 0 & =\frac{\mathrm{Rb}}{\mathrm{Rb}+\mathrm{Ra}} \times \mathrm{Vin} \\
& =\frac{35,2}{35,2+47} \times 11,5 \\
& =4,93 \mathrm{v}
\end{aligned}
$$

Tegangan keluaran dari vCO dibagi oleh pembagi tegangan sebelum masuk ke pembagi frekuensi agar tegangan keluaran VCO dapat diterima oleh masukan clock pembagi frekuensi. Keluaran VCO (sinyal persegi peak to peak) dipotong bagian negatifnya oleh dioda D sehingga hanya bagian positip saja yang diterima oleh pembagi frekuensi.

$$
f 0=\frac{1}{T} \quad f \text { in }
$$

$T=$ suatu konstanta $\left(2^{12}=4096\right)$
Frekuensi keluaran VCO dibagi dengan T, hal ini sama artinya waktu keluaran VCO dikalikan dengan T. Kita misalkan pada
pengukuran suatu beban setiap pulsa keluaran VCO mempunyai waktu t detik, maka keluaran rangkaian pembagi frekuensi sama dengan $t \times T$ detik. Jika t kita atur melalui R1 (gambar 6) sehingga pada penguku;an daya beban sebesar P watt, display akan menunjukkan P watt dalam 1 jam, maka angka (count) yang ditunjukkan display adalah dalam besaran watt jam. Bila daya. beban yang diukur semakin besar, maka frekuensi keluaran VCO semakin besar (waktu semakin kecil) sehingga penghitung pulsa (counter) akan semakin cepat.

Setiap T pulsa keluaran vCO akan menghasilkan satu pulsa keluaran pembagi frekuensi, setiap pulsanya akan menghasilkan satu angka numerik pada display. Angka digit ketiga dari display menunjukkan besaran watt jam sedangkan digit kedua dan pertama menunjukkan besaran dalam mwatt jam. Pada pengukuran beban sebesar P Watt, display akan menunjukkan angka P dalam satu jam atau P $\times 10^{2}$ pulsa dalam satu jam (P dikali 10° karena pada angka digit ketiga dari display menunjukkan besaran watt). Dengan demikian 1 pulsa keluaran pembagi frekuensi akan menunjukkan $\mathrm{P} / 100 \mathrm{P}$ Wh $(0,01 \mathrm{~Wh}=10 \mathrm{mWh})$. Ini artinya setiap kenaikan satu pulsa pada digit pertama sama dengan 10 mWh , dan ini berarti pengukuran mempunyai kesalahan sebesar 10 mWh.

Frekuensi keluaran rangkaian pembagi frekuensi tersebut dibagi lagi dengan 10 atau 100 dengan menggunakan Syncronous Up Counter untuk mendapatkan skala pengalian. Pemilihan pembagian frekuensi ini tergantung dari skala yang dibutuhkan.

Bilà skala pembagian sebesar 10 kalinya maka setiap satu pulsa keluaran pembagi frekuensi atau keluaran dekade counter sama dengan $100 \mathrm{mWh}(10 \times 10 \mathrm{mWh})$. Bila skala pembagian sebesar 100 kalinya maka setiap satu pulsa keluaran pembagi frekuensi sama dengan .1000 mWh atau sama dengan 1 Wh.

11. 8 Penghitung Pulsa

penghitung pulsa ini menggunakan empat buah decade counter, lacth, multipleser dan dekoder/driver seven segment yang berada dalam sebuah IC (MM74C926). Penghitung pulsa ini akan tetap menghitung pulsa masukannya walaupun terjadi interupsi pada sistem mikro prosessornya. Apabila mikroprosessor telah melaksanakan program interupsinya, maka daya terpakai selama terjadi interupsi akan tetap terukur sebab penghitung pulsa akan terus memberikan keluarannya kepada sistem mikroprosessor.

II. 9 sistem mikroprosessor

Sistem mikroprosessor ini terdiri dari iP MC6802, PIA MC 6821 (Peripheral Interface Adapter), EPROM 2732, rangkaian debounce , rangkaian enkoder 7 ke 4, dekoder 4 ke 7 dan komponen penunjang lainnya yang blok diagram secara keseluruhannya dapat dilihat pada gambar 10.

Mikroprosessor MC6802 memiliki RAM internal sebesar 128 byte dimana sebesar 32 byte pertama bersifat tetap, bila VCC mati isi dari memori tersebut masih tetap tersimpan asalkan VCC standby mendapat tegangan +5 V , untuk hal ini digunakan internal baterai dari jenis Nicad sebagai
supply untuk VCC standby. Dengan menggunakan sebuah rangkaian, memungkinkan pengisian baterai sat catu daya on dan memberikan daya kepada mikroprosessor bila catu daya off sehingga dengan demikian isi memori pada 32 byte pertama tetap tersimpam.

Mikroprosessor MC 6802 (8 bit), terdiri atas MPU (Micro Processing Unit), generator pewaktu (Clock generator), dan memori baca tulis (RAM) seperti pada gambar 11.

Ganbar 11. Unit mikroprosesor MC6802
MPU memiliki 8 bit paralel saluran data (D0...D7) dengan 16 jalus alamat (A0...A15), sehingga dapat dicapai pengalamatan sebanyak $2=65.536$ words. Kebutuhan banyaknya port masukan data yang diperlukan untuk mengambil sebanyak 7 keluaran penghitung pulsa adalah sebanyak 7 buah (a, b, c, d, e, f, g) dan dari Total jumlah por sebanyak 4 buah (A, B, C, D). buah, sehingga jumlah port A yang tersedia pada PIA tidak mencukupi. Untuk mengatasi hal ini dilakukan hal hal sebagai berikut :

- masukan data sebanyak 7 buah dari keluaran penghitung pulsa dimasukkan ke encoder 7 ke 4. Encoder tersebut merubah keluaran penghitung pulsa ke dalam bentuk $B C D$
- keluaran multiplexer dihubungkan ke port A dari PIA

Port A dari PIA digunakan sebagai masukan. Port PA4...PA7 sebagai masukan data dari keluaran penghitung pulsa dan PAO... PA3 digunakan sebagai masukan dari multiplexer. Port B dari PIA digunakan sebagai keluaran, PB4...PB7 sebagai keluaran counter daya dan PBO...PB3 sebagai keluaran scanning LED seven segment: Port CA1 dan CA2 sebagai masukan iterupsi IRQ dan CB2 sebagai keluaran dari interupsi SWI.

Gambar 12. Blok diagram Sistem mP
Sistem pengalamatan komponen dimaksudkan untuk membuat setiap lokasi memori setiap komponen mempunyai alamat yang unik. Pada sistem yang dibuat ini komponen-komponen yang memerlukan pengalamatan adalah EPROM, RAM dan PIA.

III. PERANGRAT LUNAK KWH METER ELEKTRONIK

Perangkat lunak ini dibuat untuk memperoleh beberapa keuntungan, diantaranya :

- mengolah dan menampilkan angka energi terpakai
- mengetahui jumlah energi terpakai pada kurun waktu tertentu
- meneruskan hitungan energi terpakai tanpa kembali ke nol bila listrik menyala kembali setelah mati.
- me-reset sistem apabila peraga telah melampaui batas maksimum (9999).

III.I Sistem pengalamatan komponen

Sistem pengalamatan komponen ditujukan untuk membuat setiap lokasi memori di dalam setiap komponen yang memilikinya mempunyai alamat yang unik.

KOMPONEN	DAERAH PENGALAMATAN	KETERANGAN
RAM	$\$ 0000-\$ 00$ TF	RAM INTERNAL MC 6802 YANG DIPAKAI $\$ 0000-\$ 001 F$
PIA 6821	$\$ 4000-\$$ TFFF	YANG DIPAKAI $\$ 4000-\$ 4003$
EPROM 2732	$\$ C 000-\$$ FFFF	YANG DIPAKA $\$ F 000-\$ F F F F$

Beberapa saluran alamat lainnya dengan orde lebih kecil (lower order address lines), dihubungkan dengan pin-pin alamat yang sesuai pada EPROM dan pin-pin pemilih register (Register Sellect) pada PIA untuk memilih suatu lokasi tertentu didalam suatu komponen.

Daerah pengalamatan EPROM dipilih $\$ F 000$ SFFFF. Pemilihan ini didasarkan pada keterikatan adanya vektor interupsi yang beralamat di \$FFF8 - \$FFFF.

PIA mempunyai daerah pengalamatan dari \$4000 - \$7FFF. Pin RSO dan RSI dihubungkan ke saluran alamat AO dan A1, sedangkan pin-pin pemilih chip (CS) dihubungkan ke saluran alamat A14, $\overline{C S 2}$ ke saluran Ais dan CS1 ke pin VMA pada MPU.

III. 2 Interupsi

Dalam mengeksekusi program yang telah kita buat, sering sekali kita membutuhkan beberapa interupsi untuk melaksanakan program interupsi. Bila terjadi interupsi, maka MPU akan berhenti melaksanakan program yang sedang dikerjakannya dan akan melaksanakan program interupsi. Ada empat macam interupsi yang dapat dilaksanakan oleh MPU 6802, menurut tingkat prioritasnya adalah sebagai berikut :

1. Reset : inisialisasi program, isi memori tidak dikosongkan.
2. NMI : pengosongan seluruh isi memori
3. SWI : penghitungan pulsa dari awal pada sat angka melampaui 9999 Wh.
4. IRQ : menampilkan jumlah energi terpakai pada kurun waktu tertentu.
Jika terjadi interupsi, MPU akan melaksanakan program interupsi yang alamat awalnya ditunjukkan oleh isi vektor interupsi.

ALAMAT MEMORI	INTERUPSI
\$FFF8 - \$FFF9	IRQ
\$FFFA - \$FFFB	SWI
\$FFFC - \$FFFD	NMI
\$FFFE - \$FFFF	RESET

IV. RESIMPULAN

Daya beban maksimum yang dapat diukur pemakaian energinya oleh KWh meter elektronik ini adalah sebesar 715 Watt tanpa memakai trafo arus (R detektor $0,47 \mathrm{Ohm}$), dengan demikian hanya dapat digunakan pada peralatan-peralatan yang tidak melebihi daya maksimumnya. Semakin kecil harga resistansi dari R detektor maka semakin besar daya beban maksimum yang dapat diukur pemakaian energinya. Kesalahan pengukuran terjadi akibat adanya resistor detektor dan penyetelan frekuensi keluaran VCo yang kurang tepat sewaktu mengkalibrasi alat tersebut.

Dengan adanya kWh meter elektronik dengan sistem mikroprosessor ini diharapkan dapat membuka peluang untuk menambah kemampuan atau pengembangan lebih lanjut, diantaranya : menghitung nilai rupiah atas energi terpakai, dapat dihubungkan ke printer dan lain-lain.

v. DAFtar pustaka

1. WATT METER, Ârtikel may, 1983.5. B.L.Theraja, ELECTRICAL TECHNOLOGY, Nirja Const. \& Development Co. (P) Ltd., New Delhi, 1980.
2. CS Rangan, GR Sarma, vSv Mani : INSTRUMENTATION, DEVICES and SYSTEMS, Tata Mc.Graw-Hill Publishing Company Limited, New Delhi, 1983.
3. Mohamed Rafiquzzaman : MICROPROSESSSOR AND MICRO COMPUTER DEVELOPMENT SYSTEM, Designing Microprosessor Based Systems, Harper \& Row, Publishers, New York, 1984.
4. MEX6802D5E MICROCOMPUTER,Evaluation Board Usez's Manual, MOTOROLA Inc., 1980.
